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Goals of Model Reduction

Subsystem 1
u1←−
−→
y1

Main Sys for Analysis
u3−→
←−
y3

Subsystem 3

u2 ↓ ↑ y2

Subsystem 2

Replace high-order complex subsystems with low-order,
(but high-fidelity) surrogates. Encode high resolution/fine grain
structure of the subsystem response acquired offline into
compact, efficient online surrogates.

Avoid using (expensive) human resources. Want the process to
be (relatively) automatic and capable of producing reliable
high-fidelity surrogates.

Should respect underlying “physics” High fidelity may not be
enough - surrogate models should behave “physically” and
respect underlying conservation laws.
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Energy-based modeling of dynamical systems

DynSys: u(t) ∈ U −→ ẋ = A x + B u(t)

y(t) = C x
x(t) ∈ X −→ y(t) ∈ Y

Assume: linear, time-invariant, asymp stable, min sys realization.

Energy-based modeling: allows for the system to extract, store, and
return value (“energy”) to/from the environment.
(inspired by: “Gibbs free energy”, “available work”, “karma” ...)

Key Modeling Element:

Supply Rate, w :Y × U → R with w(y(·), u(·)) ∈ L1
loc

w(y(t), u(t)) models the instantaneous exchange of value/energy
of the system with the environment via inputs and outputs.
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Supply rates and dissipativity

Examples of supply rates:

w(y(t), u(t)) = u(t)T y(t) (work ⇒ “Passive systems”)

w(y(t), u(t)) = 1
2 (‖u(t)‖2 − ‖y(t)‖2)

(
instantaneous gain ⇒
“Contractive systems”

)

w(y(t), u(t)) = 1
2 ( y(t) u(t) )

[ −N Ω
ΩT M

](
y(t)
u(t)

)
with M ≥ 0 N ≥ 0 (General quadratic supply rate)

For a given energy/value supply rate, w(y(·),u(·)),
a dynamical system is dissipative with respect to w, if
whenever the system starts in an equilibrium state at t0 = 0,∫ t

0
w(y(t),u(t)) dt ≥ 0 for all t ≥ 0

Starting from equilibrium, a dissipative system can never lose
more energy to the environment than it has gained.
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Dissipative systems can store energy (but maybe not give it back)

A storage function associated with the supply rate, w, is a
scalar-valued function of state, H : X → R

+, that satisfies
for any 0 ≤ t0 < t1

H(x(t1))−H(x(t0)) ≤
∫ t1

t0
w(y(t),u(t)) dt (dissipation inequality)

H(x) is a measure of “internal energy” in the system
when it is in state x.

The dissipation inequality asserts the change in internal energy
cannot exceed the net energy absorbed or delivered by the
system from/to the environment.

Dissipative systems cannot create “energy” internally apart from
what is delivered from the environment.
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Dissipativity is an exogenous system property
externally characterized;
dependent on supply rate
but independent of system realization.

Storage functions are endogenous to a system
internally characterized;
dependent both on supply rate and system realization.

For dissipative systems with linear dynamics, supply rates that are
quadratic wrt input/output imply (wlog) quadratic storage functions.

w(y(t),u(t)) = 1
2 ( yT uT )

[ −N Ω
ΩT M

](
y
u

)
with M ≥ 0,N ≥ 0

=⇒ H(x) =
1
2

xT Qx for some Q > 0
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State-space conditions for dissipativity
Take the supply rate to be a general quadratic:

w(y(t), u(t)) = 1
2 ( yT uT )

[ −N Ω
ΩT M

](
y
u

)
with M ≥ 0,N ≥ 0

and suppose H(x) is an associated quadratic storage function:
H(x) = 1

2 xTQx for Q > 0.

The dissipation inequality implies

d
dt

H(x(t)) ≤ w(y(t), u(t)).

=⇒ xTQẋ = xTQ(Ax + Bu) ≤ 1
2 (x

TCT uT)

[ −N Ω
ΩT M

](
Cx
u

)
=⇒ 1

2 xT(QA + ATQ + CTNC)x + xT(QB − CTΩ)u − 1
2 uTMu ≤ 0

The system is dissipative wrt the supply w if and only if the LMI[
Q A + AT Q + CTNC Q B − CTΩ

BT Q − ΩTC −M

]
≤ 0 has a positive-definite

solution matrix, Q > 0.

Beattie Data-driven Modeling of Dissipative Dynamics



Special case: Passive systems

Take the supply rate to be:

w(y(t), u(t)) = u(t)T y(t) = 1
2 ( yT uT )

[
0 I
I 0

](
y
u

)
(defining M = N = 0 and Ω = I)

and suppose H(x) is an associated quadratic storage function:

H(x) = 1
2 xTQx for Q > 0.

The system is passive with the storage function H(x), if and only
if Q is a positive-definite solution to the LMI:[

Q A + AT Q Q B − CT

BT Q − C 0

]
≤ 0 ⇔

Q A + AT Q ≤ 0

Q B = CT
(Luré LMI)

Passive systems have port-Hamiltonian realizations. Take
Q A = J − R with J = −JT and R = RT (skew-symm + symm).

ẋ = Ax + Bu ⇔ Qẋ = QAx + QBu ⇔ Q ẋ = (J − R)x + CTu
Q A + AT Q = −2R ≤ 0 ⇔ R ≥ 0 y = Cx
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The Plan

Dissipative systems have realizations that encode energy flux
constraints determined by the supply rate and the underlying
dissipation framework via linear matrix inequalities (LMIs).

We seek model reduction strategies that preserve this structure
=⇒ Create reduced order surrogate models that have high
fidelity and respect original dissipation constraints (this is
sensible because dissipation is an exogenous property).

BUT direct use of LMIs can be computationally untenable due to
high model order and inaccessibility of internal dynamics.

Find high fidelity reduced order models that are dissipative
while matching observations of true system response.

Take advantage of interpolatory model reduction strategies:

Data driven reduction methods producing H2-optimal
models.
Deploy convex optimization methods on low order model
classes (low order LMIs constrained by observations)
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Preserving dissipativity in reduced order models

Take the supply rate to be a general quadratic:

w(y(t), u(t)) = 1
2 ( yT uT )

[ −N Ω
ΩT M

](
y
u

)
with M ≥ 0,N ≥ 0

and suppose H(x) is an associated quadratic storage function:

H(x) = 1
2 xTQx for Q > 0.

ẋ = Ax + Bu(t)

y(t) = C x
−→ Qẋ = (J − R)x + QBu(t)

y(t) = C x

(Original Realization) (Dissipative Realization)

Q A = J − R with J = −JT and R = RT (skew-symm + symm).

“Project dynamics” by approximating x(t) ≈ Vrxr(t):

VT
r Q (Vrẋr(t) − AVrxr(t) − Bu(t)) = 0 (Petrov-Galerkin)

or equivalently,

VT
r (QVrẋr(t)− (J − R)Vrxr(t) − QBu(t)) = 0 (Ritz-Galerkin)

for some choice of subspace Vr = Ran(Vr).
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Preserving dissipativity in reduced order models

Take the supply rate to be a general quadratic:

w(y(t), u(t)) = 1
2 ( yT uT )

[ −N Ω
ΩT M

](
y
u

)
with M ≥ 0,N ≥ 0

and suppose H(x) is an associated quadratic storage function:

H(x) = 1
2 xTQx for Q > 0.

ẋ = Ax + Bu(t)

y(t) = C x
−→ Qẋ = (J − R)x + QBu(t)

y(t) = C x

(Original Realization) (Dissipative Realization)

Q A = J − R with J = −JT and R = RT (skew-symm + symm).

“Project dynamics” by approximating x(t) ≈ Vrxr(t):

VT
r Q (Vrẋr(t) − AVrxr(t) − Bu(t)) = 0 (Petrov-Galerkin)

or equivalently,

VT
r (QVrẋr(t)− (J − R)Vrxr(t) − QBu(t)) = 0 (Ritz-Galerkin)

for some choice of subspace Vr = Ran(Vr).
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Preserving dissipativity in reduced order models

Qẋ = (J− R)x + QBu(t)

y(t) = C x
−→ Qr ẋr = (Jr − Rr)xr + QrBru(t)

yr(t) = Crxr

(Dissipative realization) (Reduced dissipative model)

VT
r (QVrẋr(t) − (J − R)Vrxr(t) − QBu(t)) = 0 (Ritz-Galerkin)

for some choice of subspace Vr = Ran(Vr).

Leads to a reduced model defined by

Qr = VT
r QVr, Jr = VT

r JVr, Rr = VT
r RVr,

Cr = CVr, Br = Q−1
r VT

r QB

Is this reduced model dissipative with
respect to the same supply rate ?
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Preserving dissipativity in reduced order models

The reduced model is defined by

Qr = VT
r QVr, Jr = VT

r JVr, Rr = VT
r RVr, Cr = CVr, Br = Q−1

r VT
r QB

Evidently, Qr > 0, Jr = −JT
r and Rr = RT

r .
The original storage, Q > 0, solves

0 ≥
[

Q A + AT Q + CT NC Q B− CTΩ

BT Q− ΩT C −M

]
=

[ −2R + CT NC Q B− CTΩ

BT Q− ΩT C −M

]

=⇒ 0 ≥
[

VT
r 0

0 I

][ −2R + CT NC Q B− CTΩ

BT Q−ΩT C −M

][
Vr 0

0 I

]

=

[ −2Rr + CT
r NCr Qr Br − CT

r Ω

BT
r Qr − ΩT Cr −M

]
=

[
Qr Ar + Ar

T Qr + CT
r NCr Qr Br − CT

r Ω

BT
r Qr − ΩT Cr −M

]

Thus, Rr ≥ 0 and Ar = Q−1
r (Jr − Rr) is asymp stable.

⇒ The reduced system will be dissipative for any choice of Vr
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Finding effective reduced order dissipative models

Qẋ = (J− R)x + QBu(t)

y(t) = C x
−→ Qr ẋr = (Jr − Rr)xr + B̂ru(t)

yr(t) = Crxr

(Original dissipative realization) (Reduced dissipative realization)

Fourier Transforms: u(t) �→ û(ω), y(t) �→ ŷ(ω)

Original response: ŷ(ω) = G(ıω)û(ω)
Reduced response: ŷr(ω) = Gr(ıω)û(ω)

with transfer functions:

G(s) = C(sQ − (J − R))−1QB and Gr(s) = Cr(sQr − (Jr − Rr))
−1B̂r.

ŷ(ω)− ŷr(ω) =

(
G(ıω)− Gr(ıω)

)
û(ω)

Find a modeling space Vr so that Gr(ıω) ≈ G(ıω) for ω ∈ R.
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Interpolation by reduced order dissipative systems

Construct a modeling subspace Vr that forces interpolation.

Interpolatory projections that preserve dissipativity

Given interpolation points σ1, ..., σr and

tangent directions �1, ...,�r, construct

Vr = [(σ1Q − (J − R))−1QB�1, . . . , (σrQ − (J − R))−1QB�r].

Then with Qr = VT
r QVr, Jr = VT

r JVr, Rr = VT
r RVr, Cr = CVr, QrBr = VT

r QB

the reduced model, Gr :

{
Qrẋr = (Jr − Rr)xr + QrBr u,
yr = Crxr

is stable, minimal, dissipative wrt the given supply rate, w,

and Gr(σi)�i = G(σi)�i for i = 1, ..., r .
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Data-driven interpolatory dissip-preserving MOR

What we have so far:

Dissipativity-preserving model reduction method built on
interpolatory projections with potential for high-fidelity (GOOD)

Method is intrusive (requires explicit access to a standard
realization and “internal dynamics”); involves explicit
construction of a modeling subspace (Vr). (BAD)

Method requires knowledge of a storage (Q) compatible with the
supply rate; involves solution of a large-scale LMI (VERY BAD) .

We want a noninvasive “data-driven” approach that depends
only on observed system response - idealized as transfer
function evaluations. (This is consistent with data from some
types of empirical testing rigs.)
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Data-driven interpolation for dissipative systems

Implicit construction of interpolants

Given interp points {σ1, ..., σr} ⊂ C+ and tang direct �1, ...,�r, recall

Vr = [(σ1Q − (J − R))−1QB�1, . . . , (σrQ − (J − R))−1QB�r].

Define Σ = diag(σ1, . . . , σr) and Br = [�1, . . . ,�r].

Cr = CVr = [G(σ1)�1, ...G(σr)�r]
def
= Gr

Vr is the unique solution to the Sylvester equation:
QVrΣ− (J − R)Vr = QBBr

Premultiply by VT
r :

VT
r QVrΣ− VT

r (J − R)Vr = VT
r QBBr = B̂rBr

where B̂r = VT
r QB = QrBr

QrΣ− (Jr − Rr) = B̂rBr Cr = [G(σ1)�1, ...G(σr)�r]
def
= Gr

Interpolation Conditions Data
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Data-driven interpolation for dissipative systems

(From before: Σ = diag(σ1, . . . , σr) and Br = [�1, . . . ,�r].)

QrΣ− (Jr − Rr) = B̂rBr Cr = [G(σ1)�1, ...G(σr)�r]
def
= Gr

Interpolation Conditions Data

Any choice of matrices Qr, Jr, Rr, and B̂r that satisfy
QrΣ− (Jr − Rr) = B̂rBr will define a reduced model

Gr(s) = Gr(s Qr − (Jr − Rr))
−1B̂r

that will interpolate the data:

G(σi)�i = Gr(σi)�i for i = 1, ..., r

Can eliminate Jr by taking Hermitian part.

Equivalent conditions: Σ̄Qr + QrΣ + 2Rr = B̂rBr + B∗
r B̂∗

r

Impose dissipativity constraints
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Data-driven interpolation for dissipative systems

Given Σ, Br, and Gr (data), find Qr, Rr, and B̂r that satisfy:

Qr > 0

Σ̄Qr + QrΣ+ 2Rr = B̂rBr + B∗
r B̂∗

r[ −2Rr + GT
r NGr B̂r − GT

r Ω

B̂T
r − ΩTGr −M

]
≤ 0

Gr(s) = Gr(s Qr − (Jr − Rr))
−1B̂r with Jr = QrΣ+ Rr − B̂rBr

is a stable, minimal model that is dissipative wrt the given supply
rate and Gr(σi)�i = G(σi)�i for i = 1, ..., r.

Only an O(r) LMI is involved (cheap !) .
This provides a computable necessary condition
for the data to been produced by a system that is
dissipative with respect to the given supply rate.
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Special case: passive (pH) systems

The supply rate associated with passivity is:

w(y(t), u(t)) = u(t)T y(t) = 1
2 ( yT uT )

[
0 I
I 0

](
y
u

)
Given interp points {σ1, ..., σr} ⊂ C

+ and tang direct �1, ...,�r, define
Σ = diag(σ1, ..., σr), Br = [�1, . . . ,�r], and Gr = [G(σ1)�1, ...G(σr)�r].

A passive interpolatory model requires:

Qr > 0 and


Σ̄Qr + QrΣ + 2Rr = B̂rBr + B

∗
r B̂∗

r[ −2Rr B̂r − G∗
r

B̂∗
r − Gr 0

]
≤ 0

Equivalently,
The dissipitivity LMI reduces to: Rr ≥ 0 and B̂r = G∗

r .
Incorporating the interpolation conditions, we require:

Qr > 0, Rr ≥ 0, and Σ̄Qr + QrΣ + 2Rr = G∗
r Br + B

∗
r Gr
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Special case: passive (pH) systems

Necessary and sufficient condition for a passive interpolatory system:
Qr > 0, Rr ≥ 0, and Σ̄Qr + QrΣ+ 2Rr = G∗rBr + B

∗
r Gr

Recall the Lyapunov operator: LΣ(M) = Σ̄M + MΣ

Qr + 2L−1
Σ (Rr)︸ ︷︷ ︸
≥0

= L−1
Σ (G∗Br + B

∗
r G)︸ ︷︷ ︸

Q0

Notice that Q0 = L−1
Σ (G∗Br + B

∗
r G), is determined from

data, so if Q0 fails to be positive definite then it will be
impossible for Qr to be positive definite and the original
system could not have been passive.

Conversely, if Q0 is positive definite, then there will be a
convex family of positive-definite/semidefinite pairs (Qr,Rr)
that satisfy Qr + 2L−1

Σ (Rr) = Q0.
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Special case: passive (pH) systems

Consider the SISO case:
G∗Br = greT where gr = [G(σ1), ...G(σr)]

T ∈ Cr and eT = [1, 1, ..., 1].

Qr + 2L−1
Σ (Rr) = L−1

Σ (greT + eg∗
r︸ ︷︷ ︸

F

) = Q0 > 0

Since Q0 solves LΣ(Q0) = F, with rank(F) = 2,
Q0 will tend to have very rapidly decaying singular values.
Thus, Qr, Rr, and L−1

Σ (Rr) will tend to have rapidly
decaying singular values as well.

Approximate Rr with a low rank matrix, Rr =
∑

k αkMk with
Mk ≥ 0 (rank one) and αk ≥ 0 (variable, but potentially
rapidly decaying).

Parameterize Rr (and hence Qr) via {α1, α2, ..., αr}
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Data-driven interpolation for passive (pH) systems

Model Rr as Rr =
∑p

�=1 α�M� where p ≤ r and M� are spectral
projectors associated with the analytic center of the LMI constraint:
Rr = − 1

2 (QrAr + AT
r Qr) ≥ 0,

Rctr = argmax

{
logdet(Rr)

∣∣∣∣∣ Rr ≥ 0

L−1
Σ (Rr) ≤ 1

2 Q0

}

Then writing the spectral decomposition: Rctr =
∑r

�=1 λ�M�,
parameterize Rr as Rr =

∑r
�=1 α�M�.

Form a quadratic model of the H2-error wrt the Rr-parameters
α1, α2, ...αr

‖G− Gr‖H2 =
(

1
2π

∫∞
−∞ ‖G(ıω)− Gr(ıω)‖2

F dω
)1/2

Additional G evaluations can be avoided by aggregating earlier G
evaluations into intermediate-order Löwner or VF models, G∗.
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Data-driven interpolation for pH systems (SISO case)

Algorithm (Data-driven MOR for pH systems (DDPH))

A Find (e.g., with RlznIndIRKA) a locally H2-optimal model G∗
with interpolation points {σ1, σ2, . . . , σr} ⊂ C+,

B 1 Evaluate gr = [G(σ1), G(σ2), . . . , G(σr)]
T

2 Solve LΣ(Q0) = gre∗ + eg∗
r for Q0 ∈ Cr×r.

If Q0 is not positive-definite, then stop. G is not passive.
3 Find analytic center, Rctr, of LMI: L−1

Σ (R) ≤ Q0 with R ≥ 0
and resolve Rctrzk = λkzk, for k = 1, ...r.

4 For Mk = L−1
Σ (zkz∗k ), compute quadratic model of

‖G∗ − Gr‖H2 with respect to {α1, α2, ...αr} for
Gr = g∗

r ((Q0 − 2
∑

k αkMk)(s − Σ) + greT)−1gr.
5 Solve the SDP,

min
α

γTα+
1
2
αTΓα subject to Q0 ≥ 2

∑
k

αk Mk

6 repeat...

Beattie Data-driven Modeling of Dissipative Dynamics



ROM for Composite Beam: reduction order 8

“H2opt” is (nonintrusive) H2-optimal interpolatory MOR (does not preserve pH).
“H2pH” is an (intrusive) interpolatory projection method that preserves pH structure.
“DDpH” is the present (nonintrusive) interpolatory MOR method that preserves pH.

For comparison: optimal H2 model produces relative H2 error 1.89e-3
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Extension to structurally passive nonlinear systems

Linear:
Qż = (J − R)z + CTu(t)

y(t) = C z
with Q > 0, J = −JT ,

and R = RT ≥ 0.
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Extension to structurally passive nonlinear systems

Linear:
Qż = (J − R)z + CTu(t)

y(t) = C z
with Q > 0, J = −JT ,

and R = RT ≥ 0.

Nonlinear case:
[∇2E(z)]ż = (J(z)− R(z))z + C(z)Tu(t)

y(t) = C(z) z

with E(z) uniformly convex, J = −JT , and R = RT ≥ 0.
J, R, and C could all depend on z.
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Extension to structurally passive nonlinear systems

Linear:
Qż = (J − R)z + CTu(t)

y(t) = C z
with Q > 0, J = −JT ,

and R = RT ≥ 0.

Nonlinear case:
[∇2E(z)]ż = (J(z)− R(z))z + C(z)Tu(t)

y(t) = C(z) z

with E(z) uniformly convex, J = −JT , and R = RT ≥ 0.
J, R, and C could all depend on z.

Alternative (conjugate) representation: (Legendre transformation)
Define x = ∇E(z) and H(x) = supz

(
xTz − E(z)) =⇒ z = ∇H(x).

Then
ẋ = (J − R)∇xH(x) + CTu(t)

y(t) = C∇xH(x)
H(x) is a storage function.

H(x) is uniformly convex, J = −JT , and R = RT ≥ 0.
J, R, and C now all depend (potentially) on x.

General “port-Hamiltonian” representation of the system.
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Alternative supply rates: contractive systems

Pick γ > 0 and take the supply rate to be:

w(y(t), u(t)) = 1
2

(
γ2‖u(t)‖2 − ‖y(t)‖2

)
= 1

2 ( yT uT )

[ −I 0
0 γ2I

](
y
u

)
(defining M = γ2I, N = −I and Ω = 0)

and suppose H(x) is an associated quadratic storage function:

H(x) = 1
2 xTQx for Q > 0.

The system is γ-contractive with the storage function H(x), if
and only if Q is a positive-definite solution to the LMI:

[
Q A + AT Q + CTC Q B

BT Q −γ2I

]
≤ 0 ⇔

Q A + AT Q + CT C + 1
γ2 Q BBT Q ≤ 0

(Riccati Matrix Inequality)

If G(s) = C(sI − A)−1B is the transfer function for the system
then the system is γ-contractive if and only if ‖G‖H∞ ≤ γ. This is
an important property to insure when designing model-based
stabilizing controllers that are robust to model uncertainty.
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Special case: Nevanlinna-Pick Interpolation

Nevanlinna-Pick Interpolation problem

Given a set of distinct points, {σ1, ..., σr} in the open right half-plane
and target values, {γ1, ..., γr} ⊂ C with maxi |γi| ≤ 1.
Find a function, F(s), analytic in the right half plane such that

(a) F(σi) = γi for i = 1, ..., r, and (b) maxω∈R |F(ı̇ıω)| ≤ 1.
Such an F(s) exists if and only if the r × r “Pick matrix”: P,

with components Pij =
1 − γiγ̄j

σi + σ̄j
is positive definite.

Property (a) is a SISO interpolation condition on F
(viewed as a transfer function).
Property (b) asserts that F is contractive,
i.e. dissipative wrt the supply rate:

w(y(t), u(t)) = 1
2

(|u(t)|2 − |y(t)|2) = 1
2 ( y u )

[ −1 0
0 1

](
y
u

)
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Special case: Nevanlinna-Pick Interpolation

Define Σ = diag(σ1, ..., σr), Br = [1, . . . , 1] = eT , and
Gr = [γ1, ..., γr]

def
= gT

r and denote B̂r = b̂r ∈ Cr.

The solution requires: Qr > 0 and


Σ̄Qr + QrΣ+ 2Rr = b̂reT + eb̂∗

r[ −2Rr + grg∗
r b̂r

b̂∗
r −1

]
≤ 0

Equivalently,
Dissipitivity LMI reduces to: grg∗

r + b̂rb̂∗
r ≤ 2Rr.

Incorporating the interpolation conditions, we require:

Qr > 0 and Σ̄Qr + QrΣ + grg∗
r + b̂rb̂∗

r ≤ b̂reT + eb̂∗
r

or equivalently,

Qr > 0 and Σ̄Qr + QrΣ ≤ (eeT − grg∗
r )− (b̂r + e)(b̂r + e)∗
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Special case: Nevanlinna-Pick Interpolation
Necessary and sufficient condition for a contractive interpolatory system:

Qr > 0 and Σ̄Qr + QrΣ ≤ (eeT − grg∗r )− (b̂r + e)(b̂r + e)∗

Define the Lyapunov operator: LΣ(M) = Σ̄M + MΣ

LΣ : Cr×r
Herm → C

r×r
Herm bijectively, and the cone of positive/negative

semidefinite matrices is preserved by L−1
Σ .

Thus, we have that

Qr ≤ L−1
Σ (eeT − grg∗

r )︸ ︷︷ ︸
Pick matrix !!

−L−1
Σ ((b̂r + e)(b̂r + e)∗︸ ︷︷ ︸

positive semidefinite

If the Pick matrix is not positive definite then it is impossible for
Qr to be positive definite; no contractive interpolant can exist.

Conversely, if the Pick matrix is positive definite, there will be an
infinite number of solutions parameterized by Qr, Rr, and b̂r.
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Extending spectral zero interpolation

Antoulas� developed an interpolatory projection approach for
passivity-preserving MOR, that ...

Does not require explicit solution of Luré LMI; but...

Requires extraction of r-dim anti-stable deflating subspace: 0 A B
AT 0 CT

BT C 0

 Yr
Xr
Zr

 =

 0 I 0
−I 0 0
0 0 0

 Yr
Xr
Zr

Mr with σ(Mr) ⊂ C+.

When r = n and (A,B) is stabilizable, then Xn ∈ Rn×n is invertible
and Q = YnX−1

n is a storage function (implicitly defined)
associated with the supply rate: yTu. (the system is passive).

Reduced (passive) model is defined by Gr(s) = Cr(sQr −Ar)
−1Br,

Qr = XT
r QXr = YT

r Xr, Ar = YT
r AXr, Br = YT

r B, Cr = CXr.

Gr interpolates G at 2r points (spectral zeros) to produce
an order r passive model: G(±λ) = Gr(±λ) for λ ∈ σ(Mr) .

� Antoulas, A. C. (2005). A new result on passivity preserving model reduction.
Systems & Control Letters, 54(4), pp 361-374.
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Extending spectral zero interpolation

For a general quadratic supply rate:

w(y(t), u(t)) =
1
2
( y(t) u(t) )

[ −N Ω
ΩT M

](
y(t)
u(t)

)
with M ≥ 0 N ≥ 0 can consider instead 0 A B

AT −CT NC CTΩ

BT ΩT C M


 Yr

Xr

Zr

 =

 0 I 0
−I 0 0
0 0 0


 Yr

Xr

Zr

Mr

Same advantages/disadvantages as for passivity-preserving
spectral zero interpolation.

Seek a formulation that is data-driven...
But see partial progress in this direction by Benner, Goyal, and van Dooren(�).

They formulate passive reduced models by approximating spectral zeros of the

full system from an intermediate Loewner realization.

� Peter Benner, Pawan Goyal, and Paul van Dooren, “Identification of Port-Hamiltonian Systems
from Frequency Response Data” (2019) arXiv:1911.00080
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Summary

Reviewed basic notions of dissipative systems for LTI systems.

Key point: dissipativity is an exogenous property tied to a specified supply
rate, not tied to a particular realization.
A particular realization gives rise to a family of storage functions
(parameterized by solutions to an LMI).

Introduced an (intrusive) interpolatory projection method that
preserves dissipative structure.

+ Pro: Allows arbitrary state-space projection - gives potential for high-fidelity
− Con: Requires knowledge of a storage function (intractable for large order)
? Extension of “spectral zero” approach for passivity preservation to arbitrary

(quadratic) supply rates. Is a data-driven formulation feasible ?

Introduced a “data-driven” model reduction strategy
that preserves stability and passivity.

+ Only transfer function evaluations are needed (“data-driven”)
+ Formulation leads to convex programming problems of small size.
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